If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3r^2+6r-4=0
a = 3; b = 6; c = -4;
Δ = b2-4ac
Δ = 62-4·3·(-4)
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{21}}{2*3}=\frac{-6-2\sqrt{21}}{6} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{21}}{2*3}=\frac{-6+2\sqrt{21}}{6} $
| (u+1)9=36 | | x=3013.68+.07x | | (q-6)4=40 | | .07(x)=3013.68 | | (e+3)3=15 | | 11x+2+7x+9=20x+1 | | 3/5u=17 | | 7(2c+1)=10 | | 5+n/8=4 | | 11x+2+7+9=20x+1 | | 9x+24=x+24 | | x(.07)=3013.68+x | | 6x+2=(+2x+2) | | (q-8)5=25 | | 20a+6/8=3/40 | | -2(6x+3)=-5(4x-2) | | 6x+2=(2x+3) | | (e+3)4=32 | | 11+x+10=2x+2 | | 5k^2+48k+64=) | | 2/3(39x-18)-16x=1/2(8x-10) | | 9+-25=r/4 | | 2/3(39b-18)-16b=1/2(8b-10) | | -67=5-6k | | -v/9=14 | | 7x-14=8x-11 | | (q-5)5=20 | | 154/x=14 | | -2+(6+(-1y))=-9 | | 7/5-7z=3 | | 1/4k-5=3/4k+5 | | 3n-12=2n+4 |